Thursday, August 23, 2018

A number when successfully divided by 3,5,8 gives 1,4,7 as remainder what are respective remainders when order is reversed

Since the number was successfully divided by 3,5,8
Let the number be x

Dividing by 3 we get y as quotient and 1 as remainder
Dividing by 5 we get z as quotient and 4 as remainder
Dividing by 8 we get 1 as quotient and 7 as remainder

Now

z=8*1+7=15
y=5*15+4=79
x=3*79+1=237+1=238

So
When we divide 238 with 8 we get 29 as quotient and 6 as remainder
When we divide 29 by 5 we get 5 as quotient and 4 as remainder and
When we 5 by 3 we get 1 as quotient and 2 as remaionder

Hence required remainders are 6,4,2.

No comments:

Post a Comment